
SSARES: Secure Searchable
Automated Remote Email 

A usable, secure email system on a remote 
untrusted server

Adam J. Aviv, Michael E. Locasto, Shaya Potter
Angelos D. Keromytis

Columbia University Network Security Lab

1Thursday, January 10, 2008



Trends
 More and more information is being stored 

on remote servers
� think Google
� but also your organization’s IMAP server

 How do we protect all this information “at 
rest” on a remote server, while still provide 
the same service?

 privacy, protection, and convenience
 Good example of this service is email

2Thursday, January 10, 2008



The Problem
 Two options for email storage

 remote
 local 

 Remote Email Servers have full access to 
email

 PGP?
 Complete Encryption

 breaks what's nice about remote service
 no remote searching -  a service we need and use

3Thursday, January 10, 2008



Our Solution
 SSARES: Secure Searchable Automated 

Remote Email Storage
 Public/Private Key Encryption Algorithm

 no private information ever at the server
 Complete Email Encryption but searchable by 

server
 Built using a combination of PEKS and Bloom 

Filters

4Thursday, January 10, 2008



Threat Model
 Two types of attackers

 break into server, download mailbox, and do off-
line analysis

 observes the system in action and watches how 
messages are matched to try and determine the 
contents

 Once server is compromised
 all newly arriving mail trivially compromised
 prior received mail still protected

5Thursday, January 10, 2008



Naïve Solutions
 Hash Table 

 client will have likely keywords
 possibility of a dictionary attack

 Encrypted Hash Table
 can't search until downloaded hash table
 how big will this hash table be?

 The search routine needs protection
 should stay autonomous

6Thursday, January 10, 2008



Goals
 Transparency

 The actions of the user do not need to change
 The actions of the sender do not need to change

 Autonomy
 There is no additional interaction between the 

client and the server needed
 All cryptography can be done without the client 

private information or client interaction

7Thursday, January 10, 2008



Design

8Thursday, January 10, 2008



PEKS
 Public Key Encryption with Keyword 

Searching
 Server encrypts keyword with user's public 

key to create a PEKS
 User encrypts keyword with private key to 

create a Trapdoor
 Server can securely compare PEKS and 

Trapdoor to determine if they represent the 
same keyword

9Thursday, January 10, 2008



PEKS: functional definition

KeyGen(s): generate public/private key pair  
Apub , Apriv

PEKS( Apub , W): given a public-key,  Apub, and 

a word, W produce a PEKS, S.

Trapdoor(Apriv ,W): given a private-key,  Apriv, 

and a word, W, produce a trapdoor, TW

TEST(Apub , S, TW): given public key Apub, 

trapdoor, TW, and PEKS S = PEKS(Apub , W'), 

output match when W=W', no match otherwise
10Thursday, January 10, 2008



PEKS: definitions
� Two Groups, G1, G2 of prime order p
� Bilinear map [ e: G1xG1-->G2 ]
� Two Hash Functions

H1 : {0, 1}* --> G1

H2 : G2 --> {0,1}log_p

11Thursday, January 10, 2008



PEKS: generation
� KeyGen(p): security parameter determines 

the size, p, of the groups G1, G2. 
� pick a random α and a generator g of G1

� output: Apub= [g, h=gα ], Apriv= α

� PEKS( Apub, W): compute t = e(H1(W), hr ), 
where r is a randomly generated
� output: [gr , H2(t)] = S[A,B] 

12Thursday, January 10, 2008



PEKS: testing

� Trapdoor(Apriv,W): Tw=H1(W)α which is 
contained in G1

� Test(Apub,S[A,B],Tw): if H2(e(Tw,A))=B 
then it is a match and no match 
otherwise

13Thursday, January 10, 2008



Our Contribution
 PEKS slow

 100 keywords per message, 1000 messages
 100,000 PEKS to test for an exhaustive search

 Minimize number of PEKS to test
 only test PEKS likely to match

 Bloom Filters with a high error rate
 eliminate 75% of message before testing any 

PEKS
 High error rate limits information leakage

14Thursday, January 10, 2008



What is a Bloom Filter?
 Space efficient and  time efficient way to 

test set membership
 Non-invertible
 No false negatives
 Probabilistic false-positives or error-rate

 number of hash functions
 number of words represented in the filter

15Thursday, January 10, 2008



Bloom Filters

W

H0

H1

H2

H3

11

2

3

5

11 1 1 0 0 0 0 00000

00 1 0 1 1 0 0 10000

OR

Output of Hashing

Current State

11 1 1 1 1 0 0 10000

Resulting Filter

W

W'

 W or W' will always match 
this filter.

 But so will words not in the 
Filter

F

11 0 0 1 1 0 0 00000E
False-Positive Filter

16Thursday, January 10, 2008



Error Prone Filters
 Normal error rate very low - much less then 

1%
 could lead to a dictionary attack

 We build error in – roughly 25%
 eliminate 75% of the messages quickly

 Much harder to do a dictionary attack
 No error in query filters

 results in false-negatives

17Thursday, January 10, 2008



Constructions

18Thursday, January 10, 2008



Additionally
 Divide PEKS lists into fields by message 

parts
 To:, From:, Body:, Attachments:, etc
 less PEKS to test, more precise searching

 Alpha-Sorting
 each PEKS associated with unencrypted first 

letter of the keyword it represents
 trapdoor comes with the unencrypted first 

letter 

19Thursday, January 10, 2008



Implementation
 PEKS and Bloom Filter command line 

applications written in C
 Python wrapper scripts specific for each 

component 

20Thursday, January 10, 2008



Evaluation
 Evaluated in three parts

 email production, query production, searching
 Sample set of email from Enron data set

 100 emails

21Thursday, January 10, 2008



SSARES Email Production
 Average time of encryption 17 seconds

 worst case 3 minutes
 37x increase in size
 Both time and size are dependent on the 

number of keywords in the message
 Reasonable trade-offs – email slow transport 

22Thursday, January 10, 2008



Query Production
 Created queries with 1-20 keywords
 Three flavors

 first match
 last match
 no match

 2 sec to create for 20 keywords
 At most 9 kb for 20 keywords

23Thursday, January 10, 2008



Searching
 Subject

 with out Alpha-Sorting 
 with Alpha-Sorting

 Body with Alpha-Sorting

24Thursday, January 10, 2008



Effects of Error-Filter

25Thursday, January 10, 2008



Search Speed Per Message

2.7

0.05

0.45

26Thursday, January 10, 2008



Search Speed Overall

28.88

7.00

46.47

27Thursday, January 10, 2008



Message Size
• 37x Increase Ratio
• Keywords rather then original size 
have largest effect

28Thursday, January 10, 2008



Message Production Time
• 17.17 s. average   24.17 std.
• Worst Case: 179.31 s.
• Keywords rather then original size 
again have largest effect

29Thursday, January 10, 2008



Conclusions
 We have presented SSARES and a 

preliminary implementation with an evaluation
 no private information at server
 protect “email at rest” and searching routine

 SSARES fits our goal of Autonomy and 
Transparency

 The system still needs improvement to be 
fully usable in a real working model

30Thursday, January 10, 2008



Future Work
 Secure NLP frequency analysis using the 

error-prone filters as indexes
 select 15 most important words in body

 Use a similar error construction in query 
filters

 Implementation Improvements
 Launch a real working system

31Thursday, January 10, 2008


