
Using Shell as a Deployment Tool

Ivan ”Rambius” Ivanov

New York City BSD User Group

Feb, 2019

rambius (NYC*BUG) Deploy via Shell Feb’19 1 / 57

What Will I Talk About

Moving from ansible to pure shell scripting to manage our application’s
QA environment - how and why.

rambius (NYC*BUG) Deploy via Shell Feb’19 2 / 57

The Application

A financial application / trading platform consisting of a

databases

Linux executables

Windows executables

rambius (NYC*BUG) Deploy via Shell Feb’19 3 / 57

The Environment

A QA environment for our application that hosts the manual / integration
testing of the application.

rambius (NYC*BUG) Deploy via Shell Feb’19 4 / 57

The Starting Point

A set of ansible playbooks that deploy the application to the environment.

rambius (NYC*BUG) Deploy via Shell Feb’19 5 / 57

The Deployment Procedure

Not so complicated steps except the database parts:

Setup the database

Download binaries from the build servers and copy them to the boxes

Apply the database changes’ corresponding to those binaries

Start the binaries

Run the manual or integration tests

Shutdown and collect the logs

rambius (NYC*BUG) Deploy via Shell Feb’19 6 / 57

Setup the Database Step

Delete existing data from the database

Import latest production data

Run a set of predefined sql scripts to prepare the production data for
testing

rambius (NYC*BUG) Deploy via Shell Feb’19 7 / 57

Download the Binaries Step

Issue HTTP requests to download artifacts from the build server.

Download from a specific branch or from a default branch.

Download a specific version or the latest one.

In case of the latest version use a specially crafted URL.

Copy them to the boxes.

rambius (NYC*BUG) Deploy via Shell Feb’19 8 / 57

Apply the DB Changes for the New Binaries

The DB changes are stored as sql scripts in VCS

Changes in those sql scripts triggers builds so that the binaries and
the sql scripts stay together

Downloaded from the build server as well and then applied

rambius (NYC*BUG) Deploy via Shell Feb’19 9 / 57

How Ansible Works

Executes tasks on remote hosts from a control host

SSH
WinRM

The remote hosts are collected in an inventory

Plays specifies what commands are run on what hosts

The plays are collected in playbooks

One central host orchestrates the commands’ executions on the
remote hosts

rambius (NYC*BUG) Deploy via Shell Feb’19 10 / 57

Ansible Implementation - Database Setup

Ansible has native modules for managing and querying various databases,
but not for Oracle. Call Oracle utilities as shell commands.

rambius (NYC*BUG) Deploy via Shell Feb’19 11 / 57

Ansible - Run an SQL Script

- name: run sql script

shell: "sqlplus {{ dbuser }}/{{ dbpass }}@{{ sid }}

@file.sql"

args:

chdir: sqldir

rambius (NYC*BUG) Deploy via Shell Feb’19 12 / 57

Ansible - Import / Export DB

To import data into a database:

- name: import dump

shell: impdp {{ dbuser }}/{{ dbpass }}@{{ sid }} ...

To export a database:

- name: export db

shell: expdp {{ dbuser }}/{{ dbpass }}@{{ sid }} ...

rambius (NYC*BUG) Deploy via Shell Feb’19 13 / 57

Ansible - Fetch and Extract Binaries

The build server exports the build artifacts over HTTP. To download them:

- name: download archive

get_url:

url: http://buildserver/path/to/file.tgz

dest: file.tgz

To extract them:

- name: extract archive

unarchive:

src: file.tgz

dest: /path/to/extracted/files

rambius (NYC*BUG) Deploy via Shell Feb’19 14 / 57

Ansible - Sync Binaries

Ansible provides a wrapper around rsync to copy files to remote hosts.

- name: copy binaries

synchronize:

src: /path/to/extracted/files

dest: /deploy

rambius (NYC*BUG) Deploy via Shell Feb’19 15 / 57

Ansible - Start / Stop Binaries

We start the application via shell scripts. The shell scripts knows what
binaries to start on each box:

- name: create logs dir

file: /deploy/logs state=directory

- name: start

shell: start_app.sh

args:

chdir: /deploy

- name: stop

shell: stop_app.sh

args:

chdir: /deploy

rambius (NYC*BUG) Deploy via Shell Feb’19 16 / 57

Ansible - Copy and Clean Logs

After the application is shut down, gather the logs. Unfortunately, ansible
fetch task does not work with directories, need to use scp or rsync
commands:

- name: copy logs

fetch:

dest: logs

src: /deploy/logs <- does not work with dirs

- name: copy logs

shell: "scp -r {{ ansible_hostname }}:/deploy/logs logs"

rambius (NYC*BUG) Deploy via Shell Feb’19 17 / 57

Ansible - Completed

At this point the deployment procedure implemented in Ansible was
working more or less in a manageable and predictable way. There were
some rough edges though.

rambius (NYC*BUG) Deploy via Shell Feb’19 18 / 57

Trivial Issues

Yet another tool to learn, maintain and keep up-to-date

Yet another syntax to learn - YAML

Chasing white-space issues in YAML is not fun

rambius (NYC*BUG) Deploy via Shell Feb’19 19 / 57

Shell Commands Anyway

Due to missing functionality, like an Oracle module, or incomplete one, like
fetch task, we still need to execute pure shell commands in the plays with
either shell or command tasks:

- name: executes some script

shell: somescript.sh

- name: executes some command

command: somecmd.sh

command task does not process the command through shell, so pipes and
shell substitutions are not available.

rambius (NYC*BUG) Deploy via Shell Feb’19 20 / 57

Too Verbose when Processing Output

- name: execute some script

shell: somescript.sh

register: result

- name: if output contains

sometask: ...

when: "’success’ in {{ output.stdout }}"

- name: if output does not contain

othertask: ...

when: "’sucess’ not in {{ output.stdout }}"

Compare with pipes and grep and if.

rambius (NYC*BUG) Deploy via Shell Feb’19 21 / 57

Too Verbose when Processing Exit Codes

- name: execute some script

shell: somescript.sh

register: result

ignore_errors: True

- name: if rc is not 0

sometask:

when: result.rc != 0

Compare with if command.

rambius (NYC*BUG) Deploy via Shell Feb’19 22 / 57

Defaults and Options - I

The application relies on external services, located by configurable values
in the database. A service may have several variants:

simulator

real

testing

Default values in the playbooks can be overridden from the command line:

ansible-playbook site.yml --extra-vars "srv1_host=...\

srv1_port=...\

srv2_host=... srv2_port\

srv3_url=..."

Too much options’ names to remember and type :(

rambius (NYC*BUG) Deploy via Shell Feb’19 23 / 57

Defaults and Options - II

Use YAML dictionaries to encapsulate services’ values:

vars:

srv1_sim:

host: ...

port: ...

srv1_real:

host: ...

port: ...

srv3_real:

url: ...

srv3_test:

url: ...

rambius (NYC*BUG) Deploy via Shell Feb’19 24 / 57

Defaults and Options - III

Call ansible-playbook with logical names for the services

ansible-playbook site.yml --extra-vars "srv1=srv1_sim\

srv3=srv3_test"

Compare all that machinery with getopt in shell.

rambius (NYC*BUG) Deploy via Shell Feb’19 25 / 57

Moving to Shell Scripting

We decide to move to shell scripting, because we felt the implementation
will be simpler.

rambius (NYC*BUG) Deploy via Shell Feb’19 26 / 57

Shell - The Basic Structure

The ansible implementation albeit cumbersome helped us split the
procedure into steps that translated into shell functions in the main script
driver.sh

dbimport() {

...

}

download_binaries() {

...

}

deploy_binaries() {

...

}

rambius (NYC*BUG) Deploy via Shell Feb’19 27 / 57

Shell - Functions as Subcommands

To call those functions:

subcmd=$1

shift

$subcmd $@

ec=$?

exit $ec

For example

$./driver.sh dbimport opts args

Each function / subcommand parses its own options and arguments
usually with getopt.

rambius (NYC*BUG) Deploy via Shell Feb’19 28 / 57

Shell - ”Private” Functions

What if some functions should not be called as subsommands? Prefix the
function name with __ and check for that:

__errmsg() {

echo $@ >&2

}

subcmd=$1

shift

if expr "$subcmd" : "^__" > /dev/null ; then

__errmsg "$subcmd is private; cannot call it"

exit 1

fi

$./driver.sh __errmsg test

__errmsg is private; cannot call it

rambius (NYC*BUG) Deploy via Shell Feb’19 29 / 57

Shell - Non-existing Subcommands

Calling a non-existing function throws 127 status

$subcmd $@

ec=$?

if [$ec = 127]; then

__errmsg "Subcommand $subcmd does not exit"

exit $ec

fi

exit $ec

rambius (NYC*BUG) Deploy via Shell Feb’19 30 / 57

Shell - Exit Codes

Other scripts can call driver.sh and should be able to check for errors.
We exit each subcommand with different statuses on different errors.
Example from a script called by a cron job:

if ./driver.sh dbimport opts args

then

proceed()

else

cat logs/import.log | mail -s "DB Import Failed" \

all@team.com

exit 1

fi

rambius (NYC*BUG) Deploy via Shell Feb’19 31 / 57

Shell - Error Handling 1

A basic way to exit on error is set -e. It exits when an untested
command fails. However, it does not allow a corrective action.

echo "before false"

false

echo "after false"

set -e

echo "before false"

false

echo "after false"

rambius (NYC*BUG) Deploy via Shell Feb’19 32 / 57

Shell - Error Handling 2

Testing a command with if:

if ./driver.sh dbimport opts args

then

process()

else

correct_or_exit()

fi

or simply

if ! ./driver.sh dbimport opts args

then

correct_or_exit()

fi

rambius (NYC*BUG) Deploy via Shell Feb’19 33 / 57

Shell - Error Handling 3

Buy Ike a beer

yell() { echo "$0: $*" >&2; }

die() { yell "$*"; exit 111; }

try() { "$@" || die "cannot $*"; }

try ./driver.sh dbimport opts args

See NYCBUG presentation from 2016-02-03 for more information.

rambius (NYC*BUG) Deploy via Shell Feb’19 34 / 57

Simplifying DB Operations - 1

In the Ansible implementation we picked a random host where we ran all
DB operations:

- hosts: dbhost

tasks:

- name: copy sql files

copy: src={{ item }} dest=~/sqldir

with_fileglob:

- files/*.sql

- name: run file1.sql

shell: "sqlplus {{ dbuser }}/{{ dbpass }}@{{ sid }} \

@file1.sql"

No reason to first copy the files and then execute them.

rambius (NYC*BUG) Deploy via Shell Feb’19 35 / 57

Simplifying DB Operations - 2

If I have to implement that in Ansible now, I will use either local action

or

- hosts: localhost

tasks:

- name: run file1.sql

shell: "sqlplus {{ dbuser }}/{{ dbpass }}@{{ sid }} \

@file1.sql"

- name: run file2.sql

shell: "sqlplus {{ dbuser }}/{{ dbpass }}@{{ sid }} \

@file2.sql"

rambius (NYC*BUG) Deploy via Shell Feb’19 36 / 57

DB Operations in Shell - 1

The central command for running sql files is:

run_sqlplus() {

if [$# -ne 4]; then

__errmsg "Illegal arguments"

exit 1

fi

user=$1

pass=$2

sid=$3

file=$4

log="$logsdir/‘basename $file‘.log"

sqlplus $user/$pass@$sid @$file > $log

}

rambius (NYC*BUG) Deploy via Shell Feb’19 37 / 57

DB Operations in Shell - 2

Call run sqlplus as

run_sqlplus dbuser dbpass dbsid sqldir/file.sql

Again no one wants to type so many arguments.

rambius (NYC*BUG) Deploy via Shell Feb’19 38 / 57

DB Operations in Shell - 3

As we have a limited number of databases we can hardcode their info in
driver.sh:

db1_user="user1"

db1_pass="pass1"

db1_sid="sid1"

db2_user="user2"

db2_pass="pass2"

db2_sid="sid2"

rambius (NYC*BUG) Deploy via Shell Feb’19 39 / 57

Disclaimer

We would never hardcode production databases’ passwords in a shell
script, but these are test databases containing no valuable information.
Protecting their credentials will require more effort than it is worth.

rambius (NYC*BUG) Deploy via Shell Feb’19 40 / 57

DB Operations in Shell - 4

Now we pass only the prefix of the database variables’ names:

run_sqlplus_prefix() {

if [$# -ne 2]; then

__errmsg "Illegal arguments"

exit 1

fi

prefix=$1

file=$2

eval "user=\${${prefix}_user}"

eval "pass=\${${prefix}_pass}"

eval "sid=\${${prefix}_sid}"

run_sqlplus $user $pass $sid $file

}

rambius (NYC*BUG) Deploy via Shell Feb’19 41 / 57

DB Operations in Shell - 5

Call run sqlplus prefix as

run_sqlplus_prefix db1 file.sql

run_sqlplus_prefix db2 other.sql

rambius (NYC*BUG) Deploy via Shell Feb’19 42 / 57

DB Import / Export Utilties in Shell

We have similar function for expdp and impdp and Oracle utilities that
dump a database’s content and import a dump in a database:

run_impdp user pass sid dumpname

run_impdp_prefix dbprefix dumpname

run_expdp user pass sid dumpname

run_expdp_prefix dbprefix dumpname

rambius (NYC*BUG) Deploy via Shell Feb’19 43 / 57

Using the DB Functions

Example with importing a production datbase dump:

dbimport() {

prefix1=$1

prefix2=$2

run_sqlplus_prefix $prefix1 purge_db.sql

run_sqlplus_prefix $prefix2 purge_db.sql

run_impdp_prefix $prefix1 full_data.dmp

run_impdp_prefix $prefix2 ddl_only.dmp

run_sqlplus_prefix $prefix1 prepare.sql

run_sqlplus_prefix $prefix1 preparemore.sql

}

rambius (NYC*BUG) Deploy via Shell Feb’19 44 / 57

Deploying the Binaries

After the database is ready we are ready to deploy the binaries to the
boxes.

rambius (NYC*BUG) Deploy via Shell Feb’19 45 / 57

Downloading the Binaries - Specific Version

To download a specific version use a simple call to curl:

download_binaries() {

version=$1

baseurl=http://buildserver/project

url=$baseurl/app-$version.tar.gz

curl -sS $url -o app-$version.tar.gz

}

download_binaries 1.2.3

curl options:

-s - silent mode

-S - when in silent mode show an error message if failure

rambius (NYC*BUG) Deploy via Shell Feb’19 46 / 57

Download the Binaries - the Latest Version

If we want to deploy the latest version download binaries gets more
complicated

download_binaries() {

if [$# -eq 0]; then

version=‘resolve_version‘

else

version=$1

fi

baseurl=http://buildserver/project

url=$baseurl/app-$version.tar.gz

curl -sS $url -o app-$version.tar.gz

}

rambius (NYC*BUG) Deploy via Shell Feb’19 47 / 57

Resolve the latest version

resolve version queries a special url and parse the headers to find the
real version:

resolve_version() {

baseurl=http://buildserver/project

url=$baseurl/app-{build.number}.tar.gz

echo ‘curl -sS -D - -g $url \

| sed -n "s/.*app-\(.*\).tar.gz/\1/p"‘

}

curl options:

-D - dump the headers

- - stdin

-g - the urls can contain { and }

rambius (NYC*BUG) Deploy via Shell Feb’19 48 / 57

Inventory File - The Good Stuff From Ansible

Ansible keeps the list of the hosts it controls in an inventory file usually
one host per line. The inventory can also contain a great amount of
configuration as well and it can collect hosts in named groups.
Our inventory is just one host per line:

host1

host2

...

hostN

rambius (NYC*BUG) Deploy via Shell Feb’19 49 / 57

Copy the Binaries

”Load” the inventory and use scp

hosts=‘cat $hostfile‘

for host in $hosts

do

scp -q ./app-$version/bin/* $host:/deploy/bin

echo "Deployed to $host"

done

rambius (NYC*BUG) Deploy via Shell Feb’19 50 / 57

Parallelism

Ansible executes a task on the remote hosts in parallel. Some degree of
parallelism can be achieved in shell as well:

for host in $hosts

do

scp -q ./app-$version/bin/* $host:/deploy/bin && \

echo "Deployed to $host" &

done

wait

rambius (NYC*BUG) Deploy via Shell Feb’19 51 / 57

Starting the Application

We start the application by calling a script on each box:

for host in $hosts

do

ssh -q $host /deploy/bin/start_app.sh

done

rambius (NYC*BUG) Deploy via Shell Feb’19 52 / 57

Running Additional Commands

Often we need to run several commands on a single host:

ssh hostX cmd1

ssh hostX cmd2

...

It makes sense to reuse the ssh connection once created.

rambius (NYC*BUG) Deploy via Shell Feb’19 53 / 57

Reusing an SSH Connection - 1

To share an ssh connection to a host, define the following in
/.ssh/config

Host hostX

ControlMaster auto

ControlPath ~/.ssh/sockets/%r@%h-%p

ControlPersist 600

rambius (NYC*BUG) Deploy via Shell Feb’19 54 / 57

Reusing an SSH Connection - 2

Or use ssh command-line options:

create the sockect

ssh -S ~/.ssh/sockets/hostX -Mn hostX

use the socket

ssh -S ~/.ssh/sockets/hostX hostX cmd1

ssh -S ~/.ssh/sockets/hostX hostX cmd1

rambius (NYC*BUG) Deploy via Shell Feb’19 55 / 57

Conclusion

Is Ansible a good tool? Yes!
We still use Ansible to handle setup of Windows boxes and for procedure
that are more linear with less branching and conditionals.

rambius (NYC*BUG) Deploy via Shell Feb’19 56 / 57

Questions

Questions?

rambius (NYC*BUG) Deploy via Shell Feb’19 57 / 57

