
Rally Ventures

Abstract

• The early days of Unix at Bell Labs and discussion of
some of the key decisions made designing the shell
language.

• Why we did what we did. What worked and what did
not.

• Some of the shell innovations will be discussed as
well as what we learned later.

11/18/15 1

Rally Ventures

Early days of Unix and
design of sh

Stephen R. Bourne

Rally Ventures and ACM Queue EiC

NYC Bug

November 19th, 2015

11/18/15 2

Rally Ventures

Brunsviga at Mathematical
Laboratory

11/18/15 3

Rally Ventures

How I got to Bell Labs

• At Cambridge with Wilkes and Wheeler

• Algebra systems for Lunar Theory (CAMAL)

• Z language and life game (Conway ‘70)

• Algol68C compiler and ZCODE

• Cambridge CAP operating system

• Arrived at Murray Hill January 1975

11/18/15 4

Rally Ventures

Unix Development

• Two adjoining rooms in 6th floor attic

• PDP 11/45

• Model 33 teletypes and Tektronix 4014

• uucp – no other network

• 300/1200/9600 baud modems at home

• Instant design and quality feedback

• Source code and man pages online

• Directory conventions (etc, bin, src, man, …)

• RP05 disks and vertical surfaces

11/18/15 5

Rally Ventures

Key Players

• Dennis Ritchie (C and drivers)

• Ken Thompson (kernel)

• Doug McIlroy (pipes)

• Joe Ossanna (nroff, troff)

• Brian Kernighan (awk, C book)

• Mike Lesk (tbl, lex, uucp)

• Steve Johnson (portable C, yacc)

• Al Aho (awk, yacc)

• Stu Feldman (F77, make)

• Peter Weinberger (awk)

11/18/15 6

Rally Ventures

Sixth edition 1975

• Written in C

• 40 system calls

• grep man page was 20 lines

• Used outside of Unix group

• ed, grep, sed

• cc *.c, interfaces as .h files

• db, cdb

• Simple shell

11/18/15 7

Rally Ventures

•

11/18/15 8

Rally Ventures

•

11/18/15 9

Rally Ventures

•

11/18/15 10

Rally Ventures

•

11/18/15 11

Rally Ventures

Seventh edition and BSD

• 1976
• Wrote sh and adb

• 1977
• make, lint, awk, uucp

• 1978
• 32 bit port and Berkeley

• Seventh edition published

• File system improvements

• 32-bit port to Interdata

• 1977 – 1980
• Bill Joy and the C shell
• BSD virtual memory

• BSD 3.0 and overnight install

11/18/15 12

Rally Ventures

Seventh edition release
management

• Utility owned by last person who touched it

• Makefiles for everyone

• Some attempts to de-lint

• man pages, src, executables, libraries

• Directory structure

• But no source control or versioning

• Ran compiles from release tree

11/18/15 13

Rally Ventures

Original sh

• Thompson Shell
• Script recording with simple GOTO

• /etc/glob for wild card characters

• Shell scripts are not filters

• Script was standard input
• No control flow or variables ($1 - $9, $a - $z)

• The UNIX Time-sharing System - A Retrospective by
Dennis Ritchie

11/18/15 14

Rally Ventures

Why we started over and 
re-wrote sh

• Meeting in December in Murray Hill with Dennis

• Ken Thompson was in Berkeley for a year

• PWB Mashey shell started mid 1975

• All were patched versions of Ken’s sh

• Started writing code toward end of 1975

• First versions deployed in early 1976

11/18/15 15

Rally Ventures

sh as a language

• Typeless (like BCPL)

• Strings are first class and only citizens

• Delimited by blanks and reserved characters

• Serves as interactive and scripting language

• Provides programmable interface to the Unix system
• Variables and substitution

• Control flow

• Signal management
• Process management
• eval

11/18/15 16

Rally Ventures

Shell Design and
implementation

• ALGOL 68 concepts
• Program flow
• Closed forms (if … fi, case… esac)
• Complete substitutions anywhere

• No limits on strings (or anything else)

• String quoting rules

• Return values used for conditionals (exit=)

• Performance and strings

• Memory allocation

11/18/15 17

Rally Ventures

Shell features

• Multi character variables

• Environment variables

• Here documents (<<) with EOF and substitution

• Scripts as filters

• Command substitution

• Commands as functions (later)

11/18/15 18

Rally Ventures

Memory management 
Unix at the time

• In 1975 we were running sixth edition Unix

• Did not use the C library
• Mostly because I didn’t need to

• Also because of malloc conflicts

• Considered yacc and lex but too heavyweight

• No stdio or string copy routines

• No setjmp and longjmp (added)

11/19/15 19

Rally Ventures

Memory management

• No string length or any other "arbitrary" length restrictions

• Overall flow
• Read in element
• Evaluate from internal tree recursively
• Same from tty or file

• During evaluation anything goes
• Language is recursive so C stack not helpful
• Variable assignment of arbitrary length strings

anywhere e.g.

X = ` cat <<!
 cd `pwd`
 for v do read v; echo $v; done
 !
`

• Interleaved heap and stack

• Stack used for permanent objects including parse tree and
partially constructed strings

11/19/15 20

Rally Ventures

Memory Management credits

• A Partial tour through the UNIX shell
- Geoff Collyer, University of Toronto

- Suspect this based on AT&T system 3 shell
- Based on bugs reported

• Annotated source by Akira Nakamura 1990

11/18/15 21

Rally Ventures

Memory allocation 
(upside down)

11/18/15 22

C stack from top down

sbrk from bottom of memory

sh heap storage at bottom of this area

stack for strings and parse tree

stack and heap are interleaved

Rally Ventures

The hard bits

• Signals and process management
cat <<! &

xyz

!

• Quoting specification and exclamation

• Error recovery and reporting

• Debugging memory allocation

• Here documents

• Performance

• The usual corner cases

11/18/15 23

Rally Ventures

Quoting hell

• There are at least three conceptually distinct mechanisms
• $ parameter substitution
• argument splitting and parsing commands
• file name generation (ls *)

• Suppose $1, $2 and $3 have the values
• $1 = <>
• $2 = <a b>
• $3 = <*>

• Some choices are
 arg nsh osh
 $1 - -
 $2 <a> <a>
 $3 <...> <...>
 "$1" <> <$1>
 "$2" <a b> <$2>
 "$3" <*> <$3>
 "\$1" <$1> <$1>
 '$1' <$1> <$1>

11/18/15 24

Rally Ventures

Meta character rules

 \ $ ` ’ " * /

' n n n t n n n

` y n t n n n n

" y y y n t n n

11/18/15 25

Rally Ventures

Unix group conversion

• printing exit= after each command

• od (octal dump) hence “done”

• goto gone
“The absence of a goto is going to be mourned loudly by
many at BIS. We have a lot of COBOL and Assembler
types here who don't seem able to live without it.” (1977
comment)

• wait command interruptable
“An interruptable wait has been long awaited and
welcomed. Maybe it should have a flag argument to make
it uninterruptable if desired.” (1977 comment)

• sh scripts as filters (what it used to be)

• 32 bit porting 1978 and *0

• sbrk and more porting grief (things you don’t think of when
you write the code)

• asked Dennis what sbrk recovery was in fault routine
• never well documented

11/18/15 26

Rally Ventures

Language battles - C vs sh 
From srb Sat Mar 5 13:17:31 1977 

More seriously wrt do … done

Since there seems to be no hope of C becoming
an expression language (in which case it would be
potentially more suitable for the shell) there is
equally no hope that the shell and C will be the
same language.

The worst problem is the if...else problem which in
C requires a lookahead. The shell cannot afford to
do lookahead since it is an interactive language.

11/18/15 27

Rally Ventures

‘word ‘ – ‘drow’ dangling
‘else’ and keeping if … fi

• Ways of dealing with the word drow “problem”

case a in ... esac case a { ... }
for i do ... od for i { ... }
for i in a b c do ... od for i in a b c { … }
while c do … od while c { … }

• Separating for and while (originally one construction)
is reasonable in the command language context.

• Its use in programming languages is to look for a
member of a set with some specific property; I
cannot think of a use for this in the shell.

11/18/15 28

Rally Ventures

‘word ‘ – ‘drow’ dangling
‘else’ and keeping if … fi

For all of the above both forms can easily be provided.

if c if c
then d d
else e else e
fi

Is the dangling else is better than the fi. One way out of
dangling ‘else’ is to say that there are two constructions one
with no else part and the other with a ‘then’ part

if c
 d

if c
then d
else e

‘then’ signals the coming of the else (so to speak). The
dangling else has gone away but one has to remember that
‘then’ is written if there is an else part.

11/18/15 29

Rally Ventures

Keeping if … then … else

It seems rather radical to remove both the `structured
programming' primitives (if, while). They are both used
at present. The alternative for ‘if’ using ‘select’ is
somewhat cumbersome and unintuitive.

Using && and || produces even more amazing looking
programs. e.g.

 if a; then b; else c; fi

Becomes

 {{{a&&{b;set $rc=$r; true}}||c; set rc=$r;}; test rc = 0}

11/18/15 30

Rally Ventures

Keeping case … esac

The choice of words (select, switch, case, ...) seems
unimportant although of these ‘case’ is shortest.

The proposed construction is more error prone and is
likely to give surprising results. e.g.

 case $1 { ... }

will distribute the case inside the {...} so that leaving out
the ; is a disaster.

Also how does

 case $1; {-x
 -y
 echo x or y
 }

parse? There is no natural way to extend to more than
one case selector.

At present there is enough redundancy to find mistakes.

11/18/15 31

Rally Ventures

Associative memory aka
Environment variables

• “The shell has had a keyword mechanism working
from within the shell (the wrong place) for a couple of
years.”

• “The reason for introducing environments was to
make this mechanism uniform for shell procs and C
programs.”

• Named variables and context
• Debates over sh conventions

• x=y cmd …

• cc, make, and dd used x=y in its arguments

• You don’t have to know variables at each process
level

• Unix process rules - no child surprises

• Keyword parameters should be settable either at the
call of a cmd, or in an enclosing environment.

11/18/15 32

Rally Ventures

Environment variables

• A pcs should be able to have `local' names. i.e.
names which are not passed on to children nor
cause the behaviour of the child to be modified in
any way.

• The names used by a child can be set by any
ancestor of the child. It should not make any
difference to the child how the name was set.

• It should be possible to set a name for use by
descendants.

• A pcs should not have to be a postman for all the
names which are being passed. It only need look at
those intended for it. Others will automatically be
passed on to children.

11/18/15 33

Rally Ventures

Environment variables – alternatives 
Wed May 17 09:04:24 1978 

Viewed from a C routine there are four levels of scope:

a) Automatic variables, whose life is the subroutines’;
b) External variables, whose life is the memory load;
c) Shell environment variables, whose life is the session;
d) Files, which last forever.

It would be nice if all of these looked the same. For example:

• a,b, and d are binary; c is string
• only c has "export" and "readonly”,
• a,b, and d are accessed by address;
• c has associative searches for "x=”.

We could have a storage class "session" which was like
"extern” except it lives longer.

Unfortunately, this requires enormous system changes.

So make session variables look just like files, i.e. that a new set
of routines sopen, sseek, sclose, sread, and swrite exactly
image open, seek, ... except that they work on session files.

11/18/15 34

Rally Ventures

Environment variables  
Fri May 12 01:44:05 EDT 1978

The shell has been modified to take advantage of the
new UNIX environment passing stuff (notably execve).

As a consequence shell variables are initialized from the
environment but are not transmitted back to the
environment by default.

 export name

causes name to be sent to the environment when
processes are created

11/18/15 35

Rally Ventures

Early development - quoting  
Thu Jun 3 18:21:29 EDT 1976

• In response to popular demand a number of changes
have been made to the shell. Please let me know if
there are any problems (srb).

• $ is no longer used as the quoting character; instead
a \ is used. For example
• echo \; will print ;
• echo \$ will print $

• Within double quotes the meaning of \ is
somewhat modified and the only characters
escaped are " $ and newline.

• A new quoting mechanism '...' has been added that
inhibits all interpretation of the enclosed string. For
example
• echo '$1' will print $1

• echo '\\' will print \\

11/18/15 36

Rally Ventures

Early development ….

• ‘here’ documents are processed in one of two ways
depending on whether the string following << is
quoted or not.
• not quoted (e.g. <<!)

• a \ is used to escape a newline, $ and the
first character of the terminating string.

• Parameter substitution occurs within the
document.

• quoted (e.g. <<\!) all characters are passed
literally and no parameter substitution occurs.

• Command substitution is now written `command`
• Nested uses now need to be quoted.

11/18/15 37

Rally Ventures

Early development ….

• Added built-in names $- $$ $# $! $?
• "$@" is the same as "$1" "$2" ...
• Error checking e.g.

The notation ${...} is now checked more thoroughly.
Also the default strings are only evaluated when
needed so that e.g.
 echo ${d-`newfile`}
only executes the command newfile if $d is not set.

• Interrupt handling e.g.
• echo */*/* is now interruptable.

• Keyword parameters (x=y) only before cmd
• Performance improvements

Fri Mar 4 17:02:57 EST 1977
Some modifications have been made to the shell.
One result is that it now runs up to twice as fast
as the current shell. It also uses less space. As
usual some bugs have gone and some more
have appeared (although in both cases they escape
my test programs)

11/18/15 38

Rally Ventures

The C language and libC

• Types
• Structures like Algol68 not PL/1
• Void
• Pointers with explicit dereference
• Casts
• L and R values
• Unions added

• Functions with local and global variables
• No recursion
• All functions returned a value

• Memory management
• malloc, free
• Strings done “by hand” no ’strcopy’
• No array bound checking

• libC then stdio (later)

• Interfaces via .h files
• Conventions for initializing global variables
• Where instances are created

• define vs declare

11/18/15 39

Rally Ventures

Various shells

• Original Thompson shell
• 3 man pages

• sh
• 6 man pages

• bash man pages and word count
• 110 man pages

• 4890 37094 329778

• POSIX and ksh
• Designed by committee

• Early 80s

• dash
• A return to sanity ?

11/18/15 40

Rally Ventures

What I would have done
differently and what worked

• Write code others can read (A68 macros)

• Memory management fragile when porting

• Functions as first class citizens

• Add some real support to debug scripts

• Using 8th bit of byte as quoted character marker

• Started somewhere and iterated

• Had real users and heard what they said

• Resist feature creep given design center
• The shell can only solve so many problems

• cat –v considered harmful (Pike)

11/18/15 41

Rally Ventures

Now what

• ACM Queue
• Publishing for 10 years now

• Focus is on problem not solution

• Moving upstack
• Publishing every other month via app

• Algol68C
• Finish port
• Incorporate libraries to attach the real world
• Open source release

11/18/15 42

Rally Ventures

Thank you and Questions

11/18/15 43

Rally Ventures

Memory allocation

ß Base of heap at bottom of memory

 Interleaved with stack items awaiting recovery

ß stakbsy # chain of stack blocks that have become
 # covered up by heap allocation. `tdystak’
 # will return them to the heap

ß Top of heap

ß stakbas # base of entire stack

ß stakbot # base of current stack item

ß staktop # top of stack

ß brkend # top of entire stack

ß C stack from top of memory down

11/18/15 44

Rally Ventures

/*
 * UNIX shell
 *
 * S. R. Bourne
 * Bell Telephone Laboratories
 */

/* To use stack as temporary workspace across
 * possible storage allocation (e.g. name lookup)

 * a) get ptr from ‘relstak’
 * b) can now use ‘pushstak’
 * c) then reset with ‘setstak’
 * d) ‘absstak' gives real address if needed
 */

#define relstak() (staktop-stakbot)
#define absstak(x) (stakbot+Rcheat(x))
#define setstak(x) (staktop=absstak(x))
#define pushstak(c) (*staktop++=(c))
#define zerostak() (*staktop=0)

11/18/15 45

Stack and heap

Rally Ventures

adb – a debugger

• Written to debug Algol68C port

• Added overlays via exec

• adb could run on one machine debug another and be
compiled on a third

• How to separate out representations

11/18/15 46

Compile Debug

Run

Rally Ventures

Usage by langpop

11/18/15 47

Rally Ventures

Complete list from 1977
• dynamic storage management (for variables &c.)
• control structures (at tty as well)
• parameter substitution + - ? =
• case pattern matching
• path searching
• built in file name matching (/etc/glob)
• no re-evaluation after $ substitution
• more general patterns (/sys/s?/...)
• general trap and fault handling
• control over child signals
• piping into or out of loops
• mail notification
• argument substitution eg nohup(a;b)
• efficient for loop and reads from files
• error recovery from sub command failure assured
• shell error handling can be controlled
• checks for cat >x >x and cat >x | wc
• cannot execute/cannot find distinguished
• general redirection e.g. 2>…
• input and execution traces; also no execution mode
• wait is interruptible
• cat >x hangs on open can be INTR’d

11/18/15 48

