
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 30

Go Back

Full Screen

Close

Quit

Examples in Cryptography with OpenSSL

Ivan ”Rambius” Ivanov
rambiusparkisanius@gmail.com

August 5, 2010

http://nycbug.org
http://openssl.org

Home Page

Title Page

Contents

JJ II

J I

Page 2 of 30

Go Back

Full Screen

Close

Quit

What is cryptography?

Cryptography is the practice and study of hiding informa-
tion. It studies the schemes of converting some original intelli-
gible data to some unreadable data.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 3 of 30

Go Back

Full Screen

Close

Quit

Building Blocks of a Cryptographic
Scheme

Plaintext

Encryption algorithm

Keys

Ciphertext

Decryption algorithm

The secrecy of the system should depend only on the secrecy
of the keys and not on the secrecy of the algorithm.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 4 of 30

Go Back

Full Screen

Close

Quit

Attacks on a Cryptographic Scheme

An attack on a system is an attempt to conclude the plaintext
or the keys of the system.
The attacker is assumed to know:

• the scheme’s encryption and decryption algorithms

• considerable amount of ciphertexts

Ciphertext only

Known plaintext

Chosen plaintext

Chosen ciphertext

Brute force

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 5 of 30

Go Back

Full Screen

Close

Quit

Security of cryptographic systems

Information-theoretically secure
The ciphertext provides no information about the plaintext
(except its length)

Computationally secure
One of the following is fulfilled:

• The cost of breaking the system exceeds the gain

• The time required to break the system exceeds the life-
time of the information

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 6 of 30

Go Back

Full Screen

Close

Quit

One-time Pad

Example of informationally-theoretically secure scheme

Fix an alphabet A with length |A|. Encrypt, send and decrypt
message P = p1p2p3...pm of length m over A.

1. Generate key K = k1k2k3...km of completely random let-
ters over A.

2. Exchange the key with the receiving party.

3. Encrypt P to ciphertext C = c1c2c3...cm with
ci = (pi + ki)mod|A|.

4. Sending party destroys its copy of K.

5. Sending party sends C.

6. Receiving party receives C.

7. Decrypt C to P with pi = (ci − ki)mod|A|.
8. Receiving party destroys its copy of K.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 7 of 30

Go Back

Full Screen

Close

Quit

One-time Pad - Questions

• How do we generate K, or how do we generate completely
random - not pseudo-random - keys?

• How do we exchange the keys?

Securely sending a message P of length m means securely
exchanging a a key K of length m. One-time pad users can
generate a vast amount of data, exchange it over a slow,
but secure channel. Then they specify in the message the
position in the data where the key starts from.

• Why is it secure?

Let P is of length m and C = E(P,K). Then for every
other P ′ of length m there exists a key K ′ such that
P ′ = D(C,K ′)

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 8 of 30

Go Back

Full Screen

Close

Quit

OpenSSL

OpenSSL provides support for:

• Multithreading with mutexes

• Error handling and error queues in ERR package

• Abstract IO in BIO package

• Pseudorandom number generation in RAND package

• Arbitrary precision math with big numbers and big prime
numbers in BN package

• Hardware acceleration in ENGINE package

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 9 of 30

Go Back

Full Screen

Close

Quit

Pseudorandom Number Genera-
tion

Many operations require random numbers. OpenSSL provides
a PRNG:

• Implemented in the RAND package - openssl/rand.h

• Cryptographically strong - not truly random, but difficult
to predict

• Has to be initialized with a high-entropy seed

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 10 of 30

Go Back

Full Screen

Close

Quit

Seeding the PRNG

• Seed with a data buffer:

– void RAND_add(const void *buf,
int num, double entropy)

– void RAND_seed(const void *buf, int num)

• Seed with a file, including the OS PRNG device:

– int RAND_load_file(const char *filename,
long bytes)

• Seed with an alternate entropy source, for example EGD:

– int RAND_egd_bytes(const char *filename,
int bytes)

• On Windows seed with Windows-specific sources as a last
resort - mouse events and screen contents

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 11 of 30

Go Back

Full Screen

Close

Quit

Seeding the PRNG - Examples

if (!RAND_load_file("/dev/random", 1024)) {
fprintf(stderr, "Cannot seed the prng");

}

if (!RAND_load_file("/dev/urandom", 1024)) {
fprintf(stderr, "Cannot seed the prng");

}

char *pools = {"/var/run/egd-pool", ...,
"/etc/entropy", null}

for (i = 0; pools[i]; i++)
if (RAND_egd_bytes(pools[i], 1024))

break;

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 12 of 30

Go Back

Full Screen

Close

Quit

Symmetric Encryption

One key is used for encryption and decryption.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 13 of 30

Go Back

Full Screen

Close

Quit

Block Ciphers and Stream Ciphers

• Block ciphers

Splits the plaintext data into fixed-size blocks and the en-
crypt each block. The last block is padded if needed.

• Stream ciphers

Encrypts the plaintext data one digit at a time

Block ciphers are better studied.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 14 of 30

Go Back

Full Screen

Close

Quit

Block Cipher Modes

• Electronic Code Book (ECB)

• Cipher Block Chaining (CBC)

• Cipher Feedback (CFB)

• Output Feedback (OFB)

CBC, CFB and OFB may need an initialization vector.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 15 of 30

Go Back

Full Screen

Close

Quit

Key and IV Generation

• from pass-phrase

• randomly generated

void ce_gen_random_key(unsigned char *key,
int b) {

RAND_bytes(key, b);
}

void ce_gen_random_iv(unsigned char *iv, int b) {
RAND_pseudo_bytes(iv, b);

}

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 16 of 30

Go Back

Full Screen

Close

Quit

Initializing Symmetric Ciphers

1. Get an EVP cipher context:

EVP_CIPHER_CTX ctx;

2. Generate the key and the iv:

char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];
seed_prng("/dev/random");
gen_random_key(key, EVP_MAX_KEY_LENGTH);
gen_random_iv(iv, EVP_MAX_IV_LENGTH);

3. Initialize the context with the keys and the algorithm:

EVP_EncryptInit(&ctx, EVP_des_cbc(), key, iv);

4. Ready to encrypt or decrypt

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 17 of 30

Go Back

Full Screen

Close

Quit

What is EVP

EVP package provides a unified interface to all symmetric
encryption algorithms.

EVP_EncryptInit(&ctx, EVP_des_cbc(), key, iv);
EVP_EncryptInit(&ctx, EVP_bf_cbc(), key, iv);
EVP_EncryptInit(&ctx, EVP_aes_128_cbc(), key, iv);

Some options for some ciphers can be set in the EVP cipher
context:

EVP_CIPHER_CTX_set_key_length(&ctx, num)

or using the more generic function

EVP_CIPHER_CTX_ctrl(&ctx, int op, int arg, void *ptr)

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 18 of 30

Go Back

Full Screen

Close

Quit

Encryption

• Update the cipher context with the available data to
encrypt

EVP_EncryptUpdate(ctx, ctext, &ol, ptext, il);
...
EVP_EncryptUpdate(ctx, ctext, &ol, ptext, il);

• Finalize the cipher

EVP_EncryptFinal(ctx, ctext, &ol);

Padding is possible.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 19 of 30

Go Back

Full Screen

Close

Quit

Decryption

Similar to encryption, but use EVP_DecryptUpdate and
EVP_DecryptFinal

EVP_DecryptUpdate(ctx, ptext, &ol, ctext, il);
...
EVP_DecryptUpdate(ctx, ptext, &ol, ctext, il);
EVP_EncryptFinal(ctx, ctext, &ol);

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 20 of 30

Go Back

Full Screen

Close

Quit

Example of symmetric encryption:

$./encdes "I travel from west to east"
$./decdes ...
$./encaes "I travel from west to east"
$./decaes ...

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 21 of 30

Go Back

Full Screen

Close

Quit

Hashes

Basic properties:

• Take data of any length as input and produce fixed-size
output

• Computationally difficult to reverse - cannot determine the
input from the output

• Computationally difficult to find a second input with the
same hash as the first one

• Follow other statistical requirements as one-bit change in
the input causes on average changes half of the bits in the
output

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 22 of 30

Go Back

Full Screen

Close

Quit

Usages of hashes:

• Password storage - passwords are not stored in plain; in-
stead the hashes of the passwords combined with a salt are
stored

• Digital signatures - the content to be signed is hashed and
the hash is actually signed

• Integrity of encrypted data - the message along with its
hash are encrypted

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 23 of 30

Go Back

Full Screen

Close

Quit

How hashes work

1. Get an EVP message digest context and initialize it with
an alg:

EVP_MD_CTX ctx;
char *alg = "md5";
EVP_MD *md = EVP_get_digestbyname(alg);
EVP_DigestInit(&ctx, md);

2. Update the context with data:

EVP_DigestUpdate(&ctx, data, len);

3. Finalize the digest:

EVP_DigestFinal(&ctx, hash, olen);

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 24 of 30

Go Back

Full Screen

Close

Quit

Examples:

$./rundgst md5 "testme"
$./rundgst sha1 "testme"

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 25 of 30

Go Back

Full Screen

Close

Quit

Assymetric Encryption

One key is used for encryption - the public key and another key
is used for decryption - the private key.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 26 of 30

Go Back

Full Screen

Close

Quit

Key Pair Generation

A key pair is encapsulated in RSA structure. An instance is
created using:

RSA *RSA_generate_key(int bits, unsigned long e,
void (*callback)(int, int, void *),
void *cb_arg)

Once the keys are generated they can be DER or PEM-encoded
and stored.

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 27 of 30

Go Back

Full Screen

Close

Quit

Example of key pair generation;

void status_prime(int code, int arg, void *cb_arg) {
if (code == 0) {

// Potential prime
} else if (code == 1 && arg && !(arg % 10)) {

printf(".");
} else { // code = 2

// Found prime
}

}

RSA *rsa = RSA_generate_key(2048, RSA_F4,
status_prime, NULL);

RSA *rsa = RSA_generate_key(2048, RSA_3,
status_prime, NULL);

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 28 of 30

Go Back

Full Screen

Close

Quit

Low Level RSA API - Encrypt /
Decrypt

int RSA_public_encrypt(int flen,
unsigned char *from,
unsigned char *to,
RSA *rsa, int padding)

int RSA_private_decrypt(int flen,
unsigned char *from,
unsigned char *to,
RSA *rsa, int padding)

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 29 of 30

Go Back

Full Screen

Close

Quit

Low Level RSA API - Sign / Verify

int RSA_sign(int mdtype,
unsigned char *buf,
unsigned int buf_len,
unsigned char *sig,
unsigned int *siglen,
RSA *rsa)

int RSA_verify(int mdtype,
unsigned char *buf,
unsigned int buf_len,
unsigned char *sig,
unsigned int siglen,
RSA *rsa)

http://nycbug.org

Home Page

Title Page

Contents

JJ II

J I

Page 30 of 30

Go Back

Full Screen

Close

Quit

Q & A?

http://nycbug.org

