
SSARES: Secure Searchable
Automated Remote Email

A usable, secure email system on a remote
untrusted server

Adam J. Aviv, Michael E. Locasto, Shaya Potter
Angelos D. Keromytis

Columbia University Network Security Lab

1Thursday, January 10, 2008

Trends
 More and more information is being stored

on remote servers
� think Google
� but also your organization’s IMAP server

 How do we protect all this information “at
rest” on a remote server, while still provide
the same service?

 privacy, protection, and convenience
 Good example of this service is email

2Thursday, January 10, 2008

The Problem
 Two options for email storage

 remote
 local

 Remote Email Servers have full access to
email

 PGP?
 Complete Encryption

 breaks what's nice about remote service
 no remote searching - a service we need and use

3Thursday, January 10, 2008

Our Solution
 SSARES: Secure Searchable Automated

Remote Email Storage
 Public/Private Key Encryption Algorithm

 no private information ever at the server
 Complete Email Encryption but searchable by

server
 Built using a combination of PEKS and Bloom

Filters

4Thursday, January 10, 2008

Threat Model
 Two types of attackers

 break into server, download mailbox, and do off-
line analysis

 observes the system in action and watches how
messages are matched to try and determine the
contents

 Once server is compromised
 all newly arriving mail trivially compromised
 prior received mail still protected

5Thursday, January 10, 2008

Naïve Solutions
 Hash Table

 client will have likely keywords
 possibility of a dictionary attack

 Encrypted Hash Table
 can't search until downloaded hash table
 how big will this hash table be?

 The search routine needs protection
 should stay autonomous

6Thursday, January 10, 2008

Goals
 Transparency

 The actions of the user do not need to change
 The actions of the sender do not need to change

 Autonomy
 There is no additional interaction between the

client and the server needed
 All cryptography can be done without the client

private information or client interaction

7Thursday, January 10, 2008

Design

8Thursday, January 10, 2008

PEKS
 Public Key Encryption with Keyword

Searching
 Server encrypts keyword with user's public

key to create a PEKS
 User encrypts keyword with private key to

create a Trapdoor
 Server can securely compare PEKS and

Trapdoor to determine if they represent the
same keyword

9Thursday, January 10, 2008

PEKS: functional definition

KeyGen(s): generate public/private key pair
Apub , Apriv

PEKS(Apub , W): given a public-key, Apub, and

a word, W produce a PEKS, S.

Trapdoor(Apriv ,W): given a private-key, Apriv,

and a word, W, produce a trapdoor, TW

TEST(Apub , S, TW): given public key Apub,

trapdoor, TW, and PEKS S = PEKS(Apub , W'),

output match when W=W', no match otherwise
10Thursday, January 10, 2008

PEKS: definitions
� Two Groups, G1, G2 of prime order p
� Bilinear map [e: G1xG1-->G2]
� Two Hash Functions

H1 : {0, 1}* --> G1

H2 : G2 --> {0,1}log_p

11Thursday, January 10, 2008

PEKS: generation
� KeyGen(p): security parameter determines

the size, p, of the groups G1, G2.
� pick a random α and a generator g of G1

� output: Apub= [g, h=gα], Apriv= α

� PEKS(Apub, W): compute t = e(H1(W), hr),
where r is a randomly generated
� output: [gr , H2(t)] = S[A,B]

12Thursday, January 10, 2008

PEKS: testing

� Trapdoor(Apriv,W): Tw=H1(W)α which is
contained in G1

� Test(Apub,S[A,B],Tw): if H2(e(Tw,A))=B
then it is a match and no match
otherwise

13Thursday, January 10, 2008

Our Contribution
 PEKS slow

 100 keywords per message, 1000 messages
 100,000 PEKS to test for an exhaustive search

 Minimize number of PEKS to test
 only test PEKS likely to match

 Bloom Filters with a high error rate
 eliminate 75% of message before testing any

PEKS
 High error rate limits information leakage

14Thursday, January 10, 2008

What is a Bloom Filter?
 Space efficient and time efficient way to

test set membership
 Non-invertible
 No false negatives
 Probabilistic false-positives or error-rate

 number of hash functions
 number of words represented in the filter

15Thursday, January 10, 2008

Bloom Filters

W

H0

H1

H2

H3

11

2

3

5

11 1 1 0 0 0 0 00000

00 1 0 1 1 0 0 10000

OR

Output of Hashing

Current State

11 1 1 1 1 0 0 10000

Resulting Filter

W

W'

 W or W' will always match
this filter.

 But so will words not in the
Filter

F

11 0 0 1 1 0 0 00000E
False-Positive Filter

16Thursday, January 10, 2008

Error Prone Filters
 Normal error rate very low - much less then

1%
 could lead to a dictionary attack

 We build error in – roughly 25%
 eliminate 75% of the messages quickly

 Much harder to do a dictionary attack
 No error in query filters

 results in false-negatives

17Thursday, January 10, 2008

Constructions

18Thursday, January 10, 2008

Additionally
 Divide PEKS lists into fields by message

parts
 To:, From:, Body:, Attachments:, etc
 less PEKS to test, more precise searching

 Alpha-Sorting
 each PEKS associated with unencrypted first

letter of the keyword it represents
 trapdoor comes with the unencrypted first

letter

19Thursday, January 10, 2008

Implementation
 PEKS and Bloom Filter command line

applications written in C
 Python wrapper scripts specific for each

component

20Thursday, January 10, 2008

Evaluation
 Evaluated in three parts

 email production, query production, searching
 Sample set of email from Enron data set

 100 emails

21Thursday, January 10, 2008

SSARES Email Production
 Average time of encryption 17 seconds

 worst case 3 minutes
 37x increase in size
 Both time and size are dependent on the

number of keywords in the message
 Reasonable trade-offs – email slow transport

22Thursday, January 10, 2008

Query Production
 Created queries with 1-20 keywords
 Three flavors

 first match
 last match
 no match

 2 sec to create for 20 keywords
 At most 9 kb for 20 keywords

23Thursday, January 10, 2008

Searching
 Subject

 with out Alpha-Sorting
 with Alpha-Sorting

 Body with Alpha-Sorting

24Thursday, January 10, 2008

Effects of Error-Filter

25Thursday, January 10, 2008

Search Speed Per Message

2.7

0.05

0.45

26Thursday, January 10, 2008

Search Speed Overall

28.88

7.00

46.47

27Thursday, January 10, 2008

Message Size
• 37x Increase Ratio
• Keywords rather then original size
have largest effect

28Thursday, January 10, 2008

Message Production Time
• 17.17 s. average 24.17 std.
• Worst Case: 179.31 s.
• Keywords rather then original size
again have largest effect

29Thursday, January 10, 2008

Conclusions
 We have presented SSARES and a

preliminary implementation with an evaluation
 no private information at server
 protect “email at rest” and searching routine

 SSARES fits our goal of Autonomy and
Transparency

 The system still needs improvement to be
fully usable in a real working model

30Thursday, January 10, 2008

Future Work
 Secure NLP frequency analysis using the

error-prone filters as indexes
 select 15 most important words in body

 Use a similar error construction in query
filters

 Implementation Improvements
 Launch a real working system

31Thursday, January 10, 2008

